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Abstract—Spectrum-based fault localization (SBFL) is one of the 

most promising fault localization approaches, which normally uses 

the failed and passed program spectrum to evaluate the risks for all 

program entities. However, it does not explicitly distinguish the 

different degree in definiteness between the information associated 

with the failed spectrum and the passed spectrum, which may 

result in an unreliable location of faults.  Thus in this paper, we 

propose a refinement method to improve the accuracy of the 

predication by SBFL, through eliminating the indefinite 

information. Our method categorizes all statements into two 

groups according to their different suspiciousness, and then uses 

different evaluation schemes for these two groups. In this way, we 

can reduce the use of the unreliable information in the ranking list, 

and finally provide a more precise result.  Experimental study 

shows that for some SBFL techniques, our method can 

significantly improve their performance in some situations, and 

in other cases, it can still remain the techniques’ original 

performance 

Keywords - program spectrum; fault localization; debugging; 

risk evaluation 

I.  INTRODUCTION  

It is commonly recognized that testing and debugging are 
important but resource consuming activities in software 
engineering. Trying to locate the faults is one of the most 
essential but tedious tasks, due to a great amount of manual 
involvement. Therefore, many researchers aim at provoking 
automatic and effective fault localization technique, in order 
to decrease its cost under the limited resources, as well as to 
increase the software reliability. 

One promising approach for automatic fault localization 
is Spectrum-based Fault Localization (referred to as SBFL). 
Generally speaking, this approach utilizes the dynamic 
testing results and various program spectra information 
acquired from the testing to evaluate the risk of containing a 
fault for each program entity with different statistical 
formulas, and finally to give a risk ranking list [1]. Some 
typical techniques include Pinpoint [3], Tarantula [4], 
Ochiai [5] and etc. [6-12].    

SBFL approach has gained much popularity due to its 
nature of simplicity and practicality. However there are still 
some problems in this technique. One of them is related to the 
definiteness of the information used. By the limitation of 
software testing, SBFL has such characteristic that: information 

associated with program spectra of failed test cases and passed 
test cases has different degree of definiteness. Failed program 
spectrum has absolutely definite information that it must 
contain at least one faulty entity. On the other hand, a passed 
spectrum is not guaranteed to be absolutely free of any faulty 
entity. Therefore, in SBFL, the passed spectra must be utilized 
together with the failed ones, to provide a more comprehensive 
picture about the risks of the statements. For a program entity 
with no failed information, we cannot draw any conclusion 
about its correctness.  

However, even though some statistical formulas in SBFL 
may implicitly conceive that risk evaluation should avoid using 
the passed information alone; none of them has explicitly 
pointed out this idea, and in fact some SBFL techniques do 
overlook this idea. Take Hamming Distance, as an example, 
which uses two indexes for measuring the risk for each 
program entity, that is, the number of failed test cases which 
have executed this entity and the number of passed test cases 
which have never touched the entity [13]. The sum of these two 
indexes is regarded as the risk. However, for certain program 
entity which has never been executed by any failed test cases, 
the first index is 0. This formula becomes solely dependent on 
the second index, which is equivalent to using information 
provided by the passed spectra only. In such a situation, the 
calculated risk becomes less reliable. 

Thus, in this paper, we propose a refinement method to 
improve the accuracy of the predication by SBFL, through 
eliminating the indefinite information for some statistical risk 
evaluation formulas. We use the statement-hit spectrum as an 
illustration, which is widely used by SBFL community. Given 
a SBFL technique, rather than evaluating each statement’s risk 
of being faulty with a relevant statistical formula, our proposal 
first categorizes all statements into suspicious group and 
unsuspicious group. The suspicious group contains statements 
which have shown up at least once in a failed spectrum, that is, 
they have been demonstrated to have a chance of being faulty; 
while in the unsuspicious group, no statement has shown up in 
any failed test run. Intuitively speaking, these statements cannot 
be the faulty ones that have been “activated” by the current test 
suite. After the categorization, we then continue the normal risk 
evaluation using the original statistical formula on the 
suspicious statements; meanwhile assign all unsuspicious 
statements with the lowest risk value. In this way, we can 
improve the reliability of the ranking result, and statements in 
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suspicious group are given a higher priority in debugging, as 
they are deserved to have. 

Our proposal seems to be simple and obvious, but it is 
important because we explicitly summarize a simple but 
essential idea into a basic rule, which should be considered in 
the further SBFL technique design. Additionally, for SBFL 
techniques with the above problem, this method can serve as a 
remedy and only incurs minimal overhead. It is intuitively 
obvious that our method can enhance the performance of such 
SBFL techniques, but the significant improvement is 
somehow a pleasant surprise as would be demonstrated later. 

The rest of this paper is organized as follows: Section II 
describes the background of the spectrum-based fault 
localization. Section III discusses the problem due to the use 
of less definite information with a simple example, and also 
describes our method in details. In Section IV, we introduce 
the experimental setup. Section V presents the empirical 
results with the extensively used Siemens Suite, and provides 
some analysis about the effectiveness of our proposal. In 
Section VI, we present the related works and compare our 
method with them. Finally we present the conclusion and the 
potential problems for further study in Section VII. 

II. BACKGROUND: SPECTRUM-BASED FAULT LOCALIZATION 

Spectrum-based fault localization, referred to as SBFL, is a 
dynamic approach. Two essential types of information are 
collected for SBFL, namely testing results and program 
spectrum. Testing results are recorded as either pass or fail. 
While a program spectrum records the run-time profiles about 
various program entities for a specific test suite [7]. These 
entities could be individual statements, branches, etc; while the 
run-time information could be the binary coverage status, the 
time that the entity has been executed, etc. Practically there are 
many kinds of combinations [1]. In this paper, we will use the 
commonly adopted spectrum, statement-hit spectrum, which 
collects the binary execution flag for each statement, as an 
illustration. 

Utilizing these two types of information, SBFL produces 
a vector which consists of four indexes for each statement, 
denoted as A=<aef, aep, anf, anp >, where aef and aep denote the 
number of test cases that execute the corresponding 
statements with a failed and passed result respectively. While 
anf and anp represent the number of test cases that do not 
execute the corresponding statement, but return a failed and 
passed result respectively. An example is shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.  Example of a program spectrum.  

It can be seen from Figure 1 that there are 4 statements 
<s1, s2, s3, s4> in the current program P. And a test suite TS, 
consisting of 6 test cases <t1, t2, t3, t4, t5, t6> is executed, two 
of which (t5 and t6), give rise to failed runs and the other four 
give rise to passed runs. Vector RE = <e1, e2, e3, e4, e5, e6> 
lists the testing results of the corresponding test cases, where 
ei is the testing result for ti. Matrix MS gives the statement-hit 

spectrum. The binary number in each cell Ms

ijc  represents the 

coverage information of statement sj, by the test case ti, with 
1 if sj is executed, and 0 otherwise. Matrix MA is defined 

such that each of its column sub-vectors j

AM  represents the 

vector A for statement sj. For instance, in Figure 1, anp = 0 for 
s1 means that no test case in the current test suite can both 
pass and skip s1. And aef =2 for s4 represents that s4 is 
executed by two test cases which can detect failure. Of 
course the sum of the four indexes for each statement should 
be equal to the size of the test suite. 

Apparently the ultimate goal for SBFL is to highlight the 
parts of the program whose activities strongly correlate with 
failures. Thus a risk evaluation formula R is provided, which 

is the most essential part in SBFL, to project the vector j

AM  

into its statement risk value rj for sj. Normally for a risk 
evaluation formula, statements with higher risk values are 
considered more likely to contain faults. After getting the 
risk value vector VR = <r1, r2, r3, r4> evaluated by formula R 
for all the four statements, testers debug by inspecting the 
statements according to the descending order of VR . 

Suppose program P contains n statements <s1, s2, …, sn>, 

then the risk evaluation formula R: DA → DR, where DA 

contains the vector A=<anp, anf, aep, aef> for all statements, 

that is, DA={ | , , ,j j j j j j

A A ef ep nf npM M a a a a=< > , 1 j n≤ ≤ }, 

and
RD contains all possible risk r, whose value could be any 

real number according to different definitions.   
In SBFL, different formulas have different definitions of R, 

from the long established Hamming metric, which was 
originally introduced for error detecting and correcting codes in 
1950 [13], to recently adopted or proposed ones by SBFL 
community, including Jaccard[3], Ochiai[5], Ample[8], 
Tarantula[4], Wong’s metrics [12], etc. Generally they are 
developed from different perspectives or serve for different 
purposes. For example, the Tarantula system [4] has been 
developed for statement-hit spectra, instead of the previously 
used block-hit spectra. Together with a visualized report, it gives 
a more detailed and practical diagnosis. While Wong et. al [12] 
provide some more reasonable metrics by distinguishing the 
effects of different passed test cases in risk evaluation. These 
metrics are based on the heuristic that the impact of the first 
passed test case in evaluating the risk of certain statement is 
more significant than or equal to that of the second passed test 
case that executes it. Anyhow no matter from what perspective 
are the formulas derived, they should all follow the same 
intuition that the faulty statements must be related to failed runs 
more closely than the correct statements. Since the evaluation of 
a specific formula is not the focus of this paper, we will not 
discuss this in details and just simply adopt those formulas, and 
see how much they can be improved by our refinement method. 
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III. METHODOLOGY 

A. Assumption 

Generally speaking, the performance of SBFL is solely 
dependent on the test suite. Therefore in this paper, all the 
“faulty statements” that we refer to are meant for the ones 
that have been “activated” by the current test suite. For those 
“sleeping” faults which have not yet been revealed by any 
failed test cases are not considered in our discussion. This 
assumption is meaningful because only failed runs can give 
us definite indication about the faults in the program. And 
SBFL techniques just utilize this information to evaluate the 
risk for each statement of being faulty with various statistical 
formulas. Hence, if we want to discover more faults, the only 
way is to improve the current test suite, getting at least one 
test case revealing the additional faults, and hence acquire 
some definite information about them. Actually this is also 
assumed implicitly by all existing SBFL techniques, which 
require a test suite with at least one failed test case.  

B. Problem 

SBFL uses two types of program spectra, the failed and 
the passed spectrum, to estimate the risk of each statement, 
with different risk evaluation formulas. However, the 
information associated with these two types of spectra has 
different degrees of definiteness. Failed program spectrum 
has absolutely definite information that it must contain at 
least one faulty statement. On the other hand, a passed 
spectrum is not guaranteed to be absolutely free of any faulty 
statement. Therefore with the use of passed spectra 
information alone we cannot draw any reliable conclusion 
about the correctness of certain statement.  

Normally SBFL techniques intend to utilize both kinds of 
information to make a decision. However sometimes it may 
happen to use only the passed spectrum to evaluate the risk 
for certain statement. This may yield an unreliable risk value, 
and consequently results in a less precise localization result.  

Here we still use the example in Figure 1 to illustrate this 
situation. Suppose in the program P, s4 is the sole faulty 
statement. Let us take one of the Wong’s formulas as an 

example: ( ) : ef epR A r a a= − [12]. According to each column 

vector j

A
M in

A
M , we get the vector VR = <-2, -1, -2, -1>, which 

contains the risk value for each statement correspondingly. It 
can be seen that s2 has got the same highest risk as the real 
faulty statement s4. The high risk of s2 is due to the presence 
of indefinite information associated with aep, as aep = 1, but 
not the definite information associated with aef, as aef = 0. 
Therefore in this paper, we propose a refinement method by 
excluding such scenarios. 

C. Solution 

Suppose the statement set of program P is {s1, s2, …, sn}. 
Since each failed spectrum can definitely indicate the 
presence of at least one “activated” faulty statement, based on 
the assumption in Section III.A, we can easily conclude that 
all the “activated” faulty statements must reside and only 
reside in the union of all failed spectra. Therefore we can 
categorize all statements into two groups: the suspicious group 

Gs and the unsuspicious group Gu. We define
s i

failed

G tr= ∪ , 

where tri ={sj | sj such that it is executed by test case ti}, that 
is, the collection of statements with value 1 in the statement-
hit spectrum for test case ti. And consequently we 

define
u sG P G= − .  

It can be seen from the definition that Gs contains all 
statements which have shown up at least once in a failed 
spectrum, that is statements with aef ≠ 0; while in Gu, no 
statement has shown up in any failed test run, that is statements 
with aef = 0. It is obvious that with respect to the current 
“activated” faults, the statements in Gs have been 
demonstrated to have a chance of being faulty. While the 
statements in Gu are clean, that is, they cannot be the 
“activated” faulty statements. For the example in Section 
III.B, we have Gs = {s1, s3, s4} and Gu = {s2}. 

After the above categorization, we update the evaluation 

formula with R
new

: DA →DR in the following way: 

( ) 1
( )

_

i i snew

i

i u

R A s G
R A

Min risk s G

+ ∀ ∈
= 

∀ ∈

 

where , , ,i i i i

i ef ep nf npA a a a a=< >  denotes the vector A for 

statement si, and Min_risk = min{R(Ai)|∀si∈Gs}, that is the 

minimal risk value among all statements i ss G∈ . For the 

example in Section III.B, after using our refinement method, 
the new risk vector becomes VR = <-1, -2, -1, 0>. This time, 
the SBFL technique makes a more accurate estimation. 

It can be seen that formula R
new

 evaluates the risks of 
statements in different groups with different schemes, which 
can separate them in the final ranking list. For statements in 
Gs, the new risk values are their original values acquired 
from the original formula R, added by a constant. The actual 
value of this constant is not important, since only the relative 
order among all statements is important; hence the aim of 
this addition is just to assure that all statements in Gs have 
higher risk values than statements in Gu. In our definition of 
R

new
, we use 1 as an example. 
On the other hand, for statements in Gu, the new risk 

values are simply assigned with the minimum among all 
original risk values evaluated by R. They are not 
distinguished in our method because the only available 
information about these statements from the current test suite 
is the number of passed test cases that have executed these 
statements. There are 2 possible situations: 

1. aep = 0, that is this statement has never been executed 
by any test case in the current test suite. In such a case, we 
actually have no information about this statement. 

2. aep ≠ 0, which means that this statement has been 
executed, but only by some passed test cases. According to the 
limitation of software testing, the passed runs themselves 
cannot provide any absolutely definite information about the 
correctness of the statements. 

However aep may be affected by the current test suite, 
hence with this index only, we cannot reliably distinguish these 
statements. Actually the scheme that assigns the risk of 
statements in Gu with the same lowest value indicates that these 
statements can be ignored in debugging, because we are 
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absolutely sure that they can never be any of the current 
“activated” faulty statements. Even they may be the “sleeping” 
faults; we still have no way to be sure what they actually are. 
Hence the most reasonable way is to ignore them in debugging, 
until they are executed by some new failed test cases. At that 
time, they become suspicious statements, with respect to the 
newly “activated” faults revealed by the new failed test cases. 

In a word, with R
new

 all statements in Gs will be ranked at 
the top of the final list, in their originally relative order ranked 
by R. While all statements in Gu will be ranked at the bottom 
of the list. In such a way, our method can provide a more 
precise localization result by excluding the indefinite 
information and make programmers to focus on the 
statements in Gs. Of course, we can improve R

new
 by 

distinguishing statements in Gu, apparently, with some 
additional information that can provide definite or heuristic 
hints. And this will be investigated in our future study. 

It can be seen that our method helps to distinguish the 
difference of information associated with failed test cases and 
passed test cases, in terms of their definiteness. Actually among 
all the existing statistical risk evaluation formulas in SBFL, 
which are derived from different intuitions and serve for 
various purposes, some may implicitly conceive that risk 
evaluation should avoid using the passed information alone (for 
example the Tarantula [4], but not Wong’s formula [12]). 
However none of them has explicitly pointed this out, which 
makes it easily be overlooked. Hence our proposal explicitly 
summarizes this simple but essential idea into a basic rule, 
which should be considered in the design of new SBFL 
techniques. More importantly, for those existing formulas 
which do not conceive such idea, our method can serve as an 
effective refinement remedy with marginal overhead. Of 
course, the effectiveness could be different with different fault 
types and test suites. Thus, it is interesting for us to investigate 
how effective our method can be. 

IV. EXPERIMENTAL SET UP 

A. Testing objects 

In our case study, we use the Siemens suite as our 
benchmark, which is acquired from the Software Information 
Repository [15]. The Siemens suite contains seven small 
programs, several faulty versions of these programs and also 
a series of test suites for various testing criteria. Table I lists 
the programs, the number of faulty versions of each program, 
lines of code, number of all test cases, as well as a brief 
description about the functionality of the corresponding 
program. For more detailed information, please refer to [16].  

We choose the Siemens suite simply because it is a 
widely used benchmark for fault localization community [5, 
12, 17, 18]. In our experiments, we utilize the “universe” 
suite, which contains all the test cases in the Table I. 
However we cannot adopt all mutants of these programs 
(132 versions in total). Among these 132 mutants, version 10 
of print_tokens2, version 32 of replace and version 9 of 
schedule2 have no failures detected by any test case, hence 
they are not considered by our experiments. Besides, in our 
study, we focus on the single-fault mutants. Hence, version 1 
of print_tokens, version 21 of replace, version 2 and version 7 

of schedule, versions 10, 11, 15, 31, 32, 33 and 40 of tcas are 
discarded in the experiments. Furthermore, in our experiments, 
we aim to investigate the executable statements, thus we ignore 
the modification in non-executable statements, such as 
changing in the header files, mutants in variable declaration 
statements, or modifications in a macro statements started with 
#define. For this purpose we further exclude the following 
mutants: version 12 of replace, versions 2, 4 and 6 of 
print_token, versions 13, 14, 36, 38 of tcas, and versions 6, 10, 
19, 21 of tot_info. In summary, we have excluded 26 mutants 
in total, and used 106 versions for experiments. Besides gcov is 
applied for the statement-hit spectrum collection. 

TABLE I.  BRIEF INTRODUCTION OF SIEMENS SUITE 

Program Versions LOC Number of 

Test Cases 

Description 

print_tokens 7 563 4130 Lexical analyser 

print_tokens2 10 508 4115 Lexical analyser 

replace 32 563 5542 Pattern recognition 

schedule 9 410 2650 Priority scheduler 

schedule2 10 307 2710 Priority scheduler 

tcas 41 173 1608 Altitude separation 

tot_info 23 406 1052 Information measure 

B. Formulas under investigation 

As described in Section III.C, different risk evaluation 
formulas are designed from different perspectives, and used for 
different purpose. Some of them may make use of the indefinite 
information. Our experimental study is focused on such formulas. 
Table II lists all the formulas we have investigated in the 
experiments, which can be divided into two groups [14]. 

TABLE II.  INVESTIGATED FORMULAS 

The first group contains formulas which have been used 

in other SBFL techniques. These formulas include: Wong2, 

Wong
3 
which were originally introduced by [12], Optimal and 

its variant Optimal
p
 (referred to as O and O

p
 respectively in 

the table), which are provided in [14] and have been proved 

to be the best in certain cases among many formulas, and 

Cooperative Bug Isolation system (referred to as CBI in the 

Name Formula 

Wong2   ef ep
a a−

 

Wong3   
efa h− , where ( 2)

2 0.1( 2)(2 10)

2.8 0.001( 10)( 10)

ep ep

ep ep

ep ep

a a

h a a

a a

 ≤


= + − < ≤
 + − >

 

O 1( 0)

( 0)

nf

np nf

a

a a

− >

≤

 

Op 

1

ep

ef

ep np

a
a

a a
−

+ +

 

CBI 
ef ef nf

ef ep ef nf np ep

a a a

a a a a a a

+
−

+ + + +

 

Scott  24 4 ( )

(2 )(2 )

ef np nf ep nf ep

ef nf ep np nf ep

a a a a a a

a a a a a a

− − −

+ + + +

 

GMean  

( )( )( )( )

ef np nf ep

ef ep np nf ef nf ep np

a a a a

a a a a a a a a

−

+ + + +

 

Rogot 1
( )

4

ef ef np np

ef ep ef nf np ep np nf

a a a a

a a a a a a a a
+ + +

+ + + +

 

M ef np

nf ep

a a

a a

+

+
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table) [10]. However, CBI was not originally designed for 

statement-hit spectrum. It is for the method called 

instrumentation of predicates, which instruments predicates in 

selected parts of the code. Hence it uses the sampling of the 

coverage information collected by the instrumented 

predicates, rather than using the whole execution trace. But its 

formula can be equally applied to the statement-hit spectrum. 
We also select several metrics from other research 

domains to form the second group. Even they are not 
originally designed for fault localization; it is still worth to 
investigate them. Because most of the formulas used in fault 
localization are actually brought from other research areas, 
such as mathematics, data mining, bioinformatics, etc. 
Among which Scott [21], Geometric Mean (referred to as 
GMean in the table) [22] and Rogot [23] are introduced from 
the area of biometrics. And one of the unnamed metrics that 
is referred to as M in [14] is previously used for 
classification and clustering [24]. 

C. Evaluation metric 

In our experimental study, we use the established 
measurement, relative ranking of faulty statement, to 
investigate the effectiveness of the application of our 
refinement method to some SBFL techniques. The relative 
ranking, referred to as pr in this paper, is the percentage of the 
program that needs to be examined before a bug is found (that 
is the absolute ranking of the faulty statement divided by the 
total number of statements). Similar effectiveness 
measurements have been adopted by most of the previous 
studies in SBFL [2, 5, 6, 14, 17, 18, 25]. 

In our experiments, for the statements with the same 
assigned risks value, we rank them according to their original 
order in the source code. This is reasonable and practical 
because in the real debugging process, for a set of statements 
of the same risk, we have no way to specify certain checking 
order without any other information. Thus the most natural 
way is to check them one by one in their original order.  

In our empirical data, we also exclude all the non-
executable lines in source code, such as the comments, blank 
lines, the braces, declarations, macro definition (#define), etc. 
This is a reasonable process because they will not be 
considered when developers debug their program. 

V. RESULTS AND ANALYSIS 

A. Effectiveness 

In our experiments, we apply the refinement method to all 
the formulas listed in Table II, investigating its effectiveness in 
improving the performance of these SBFL techniques. For each 
program, we use a box-plot diagram to visually present the 
performance improvement after adopting our refinement 
method in all the formulas, that is, the percentage of the relative 
decrease in pr, in Figure 2 to Figure 8. From the bottom to the 
top, each column of these diagrams presents the minimum, the 
1st quartile, the medium, the 3rd quartile, and the maximum 
of the percentages among all the mutants of the respective 
program, with certain risk evaluation formula. Columns 
without any data demonstrated indicate that the respective 

formula’s performance remains unchanged after adopting 
our method. 

 
 
 
 
 
 

 

Figure 2.  Performance comparison in print_token 

 
 
 
 
 
 

 

Figure 3.  Performance comparison in print_tokens2 

 
 
 
 
 
 
 

 

Figure 4.  Performance comparison in replace 

 
 
 
 
 
 

 

Figure 5.  Performance comparison in schedule 

 
 
 
 
 
 
 

 

Figure 6.  Performance comparison in schedule2 

 
 
 
 
 
 
 

 

Figure 7.  Performance comparison in tcas 
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Figure 8.  Performance comparison in tot_info 

It can be seen from these figures that our method is 
helpful in improving the performance of SBFL in many 
situations: among all the programs under testing, the number 
of formula whose performance has been improved varies 
from three to eight out of nine under investigation. 
Especially in some mutants of these programs, some risk 
evaluation formulas can achieve quite significant 
improvement. For example, in the version 3 of tot_info, 
when using Wong

2
 as the risk evaluation formula, our 

refinement method can achieve as high as 96.0% 
improvement. Besides for the situations where the 
performance of certain formula cannot be improved, our 
method can still ensure to remain its original pr. Table III and 
Table IV summarizes the result for individual program and 
formula respectively. 

TABLE III.  SUMMARIZED IMPROVEMENT FOR INDIVIDUAL PROGRAM 

 
TABLE IV.  SUMMARIZED IMPROVEMENT FOR INDIVIDUAL FORMULA 

In Table III, for each individual program, this table 
presents the number of formulas that have been improved in 
column “R_Num”; as well as the maximum and minimum of 
the average performance improvement over all the mutants 
among all the investigated formulas, in column “Max_Imp” 
and “Min_Imp” respectively. It can be seen that for program 
print_tokens, print_tokens2, tcas and tot_info, performance have 
been improved in about half of the formulas, and for program 
replace, schedule and schedule2, almost all the formulas have 
been improved. Among all the improvement, the highest one 
is in program tcas, using both formula Wong

2
 and M. The 

magnitude is as high as 29.4%. Apart from tcas, for other 
programs like print_tokens, replace, schedule and tot_info, 
the maximal decrease in pr is also no less than 24%. 
However for print_tokens2 and schedule2, the improvement 
is not as significant as the other programs. 

In Table IV, for each individual formula, column 
“P_Num” represents the number of programs that have been 
improved for certain formula. It can be discovered that 
different formulas have different sensitivities to our 
refinement method, but they have been improved in at least 
one program. Wong

2
, Scott and M are of the highest 

sensitivity to our method, since their performances have been 
improved in all the 7 programs. Meanwhile, their maximal 
decrease in pr is not less than 28%. Besides, in formula 
Wong

3
, O

p
, GMean and Rogot, even their performance have 

only been improved in less than 4 of the programs, their 
maximal magnitudes are still very substantial (no less than 
23.0%). Especially for formula O

p
, we surprisingly discover 

that
 
in program schedule, it can obtain a relatively significant 

decrease of pr by 24.8%. More importantly, O
p 

has been 
proved as an optimal formula in most situations [14]. On the 
other hand, formula O and CBI can be regarded as less 
sensitive to our methods, due to their low P-Num and less 
significant improvement than the other formulas. 

B. Threats to validity 

There are a number of threats to the validity of this 
experimental study. Specifically, the primary one is the 
representative of our results acquired from the Siemens suite. 
Although these 7 programs are adopted widely in SBFL 
community as a benchmark, we still need to use some more 
programs with larger scales, to investigate the effectiveness of 
our method. Besides, the results in our experiments are 
obtained from mutation analysis of single fault. To investigate 
the effectiveness of our method in a more generalized situation, 
we need to adopt mutants with multiple faults. Another threat is 
about the effectiveness measurement. We rank all statements 
with the same risk in their original order in the source code, but 
there also exist some other schemes in ranking these statements, 
such as average, best-worst, etc [25]. We can investigate the 
effectiveness of our method with these schemes. These further 
experiments will be completed in our future study. 

VI. RELATED WORK 

Apart from SBFL, current research in fault localization and 
debugging has developed many other techniques using various 
intuitions. Some of them consider only statements executed in the 
failed runs. Two typical ones are methods that isolate faulty 
statements via predicate switching and value replacement [26, 27].  

In the method using predicate switching, a predicate’s 
outcome is forcibly switched at runtime. Consequently the 
control flow is altered and the program state is modified. This 
method tries to isolate the faults by examining the predicates 
whose switching can bring the program execution into a 
successful completion, using the original failed test input. 
Similarly the method using value replacement aims to search 
for statements whose replacement will change a failed input 
into a passed one. This is done by replacing values used at a 
statement during the runtime execution of the failed test case. 

Program R_Num Max_Imp Min_ Imp 

print_tokens 3 24.1% 10.4% 

print_tokens2 4 6.3% 2.5% 

replace 7 25.0% 3.6% 

schedule 8 28.3% 1.0% 

schedule2 7 6.7% 0.2% 

tcas 4 29.4% 0.6% 

tot_info 4 24.8% 3.2% 

Formula P_Num Max_Imp Min_ Imp 

Wong2 7 29.4% 6.3% 

Wong3 4 24.9% 0.2% 

O 3 6.5% 0.4% 

Op 1 24.8% 24.8% 

CBI 3 4.5% 0.3% 

Scott 7 28.3% 5.2% 

GMean 3 24.2% 0.3% 

Rogot 2 23.0% 3.6% 

M 7 29.4% 4.3% 
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It is obvious that these methods are different from our 
refinement method. Firstly, our method needs to be integrated 
with a SBFL technique, which uses information obtained 
from testing and various statistical formulas to evaluate and 
rank the risks for different program entities. The above two 
methods are not SBFL techniques and are derived from 
different perspective and intuition, using different mechanism 
to isolate the faults. Secondly, our method focuses on using 
all the failed test information to refine some risk evaluation 
formulas in SBFL, so as to decrease the risk value of 
statements which are not executed by any failed test cases. For 
statements which are executed by some failed test cases, we 
still use all the failed and passed testing information in the 
current test suite to evaluate their risks. However, the above 
two methods only use the information obtained from one single 
failed test case, and try to turn this “failed” test input into a 
“passed” one, through the predicate switching or value 
replacement. 

Our method is also different from the set-based 
debugging techniques, which try to isolate the faulty 
statements based on various heuristic models. Two 
representatives are the Nearest Neighbor technique [17] and 
the Execution Slicing based technique [ 

]. 
The Nearest Neighbor technique has two heuristic 

models, namely Set-union and Set-intersection. Both of them 
use a single failed spectrum (tr

f
) and all the passed spectra 

(tr
p
). Set-union model aims at removing the union of all 

passed spectra from the failed spectrum, that is, f p

i

i

tr tr−∪ . It 

focuses on statements that only belong to the failed run. Set-

intersection model uses set p f

i

i

tr tr−∩ , of which non-

membership is discriminant for the fault.   
The Execution Slicing based technique locates the faulty 

statements by using three heuristic models on execution 
slicing. The first model uses one failed execution slicing 
(ex

f
), and one passed execution slicing (ex

p
). The target 

statements are the execution dicing, ex
f
-ex

p
. These statements 

are given highest priority in debugging, while statements in 

set ex
f
∩ex

p
 have the second highest priority and statements in 

ex
p
-ex

f 
are assigned with lowest priority. The second model 

uses one failed execution slicing ex
f
, and two passed execution 

slicing
1

pex  and
2

pex , in which, set 
1 2

( )f p pex ex ex− ∪ is assigned 

with the highest priority, set 
1 2( )f p p

ex ex ex∩ − and 

2 1( )f p p
ex ex ex∩ − are equally assigned with the second highest 

priority, set 
1 2

f p pex ex ex∩ ∩ are assigned with the third highest 

priority, while the remaining statements obtain the lowest 
priority. And the third model, as well as the most general case, 
uses multiple failed and multiple passed execution slicing. 
Suppose the whole test suite is TS, for any of its subset TS’ 
which contains both failed and passed test cases, the 

construction scheme is f p

i j

i j

ex ex−∩ ∪
, where f

i
ex and p

jex are 

the failed and passed execution slicing of test cases that belong 
to TS’ respectively. 

However it can be seen that, none of the above models 
has explicitly distinguished the different degree of reliability 
between the information associated with the failed and the 
passed test cases. Hence they can provide only some 
heuristic results. Meanwhile, apart from the third model in 
Execution Slicing based technique, all the other models are 
based on only one failed test case with definite information 
and multiple passed test cases with indefinite information, 
which makes the results even more unreliable. Differently, 
our method explicitly makes use of the distinction between 
definite information of failed runs and indefinite information 
of passed runs. Based on this fact, we use all the failed 
testing information to categorize statements.  

Furthermore these techniques only provide a set of 
statement, which serves as the initial suspicious set for 
debugging. However they do not clearly distinguish the 
suspiciousness either within the set or outside the set, that is, 
they cannot provide a more subtle risk ranking list. Even 
though the first two models of the Execution Slicing based 
technique can assign different sets with different priorities, 
for the third model in general case, since the combination of 
execution slicing becomes much more complex, it is not a 
trivial task of assigning priorities to all these combinations. 

While our method, which serves as an enhancement to 
SBFL, can fully utilize the information from the current test 
suite and evaluate the risks for suspicious statements by 
adopting the same method of SBFL. Thus it not only helps to 
exclude the unsuspicious statements, but also can supply a 
subtle ranking list for all suspicious statements, which can 
facilitate the debugging much better. 

VII. CONCLUSION 

In this study, we proposed a refinement method for 
SBFL techniques. In our proposal, we take into 
consideration of the distinction between the definiteness of 
the information carried by the failed spectra and the passed 
spectra, and hence improve the accuracy of the predication 
by some statistical risk evaluation formulas, through the 
elimination of indefinite information. Our approach works 
under the assumption that SBFL process should focus on 
those “activated” faulty statements with respect to the 
current test suite; other potential “sleeping” faults should be 
ignored. This is generally assumed by the SBFL 
community, since all of its existing techniques require a test 
suite with at least one failed run to reveal the fault.  

Under the above assumption, we categorize all 
statements into suspicious group and unsuspicious group, 
with respect to the “activated” faults. The suspicious group 
should contain all the statements that have been 
demonstrated to have a chance of being faulty; while the 
unsuspicious group contains the remaining statements. Under 
such categorization, we only need to calculate the risks for 
suspicious statements, and simply to assign the risks of 
unsuspicious statements as the lowest value.  

Even though some SBFL techniques may implicitly 
conceive that risk evaluation should avoid using the passed 
information alone; none of them has explicitly pointed it out, 
and actually some SBFL techniques do overlook this idea. 
Hence we explicitly summarize this simple but essential idea 
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into a basic rule, which should be considered in the further 
SBFL technique design.  

More importantly, for the SBFL techniques that do not 
conceive such idea, our method can serve as an effective 
remedy. It is intuitively obvious that our method will not 
worsen the performance of these SBFL techniques, but how 
effective it can be is an interesting and important question. 
Thus we conducted an experimental study to investigate its 
effectiveness using the Siemens suite and 9 evaluation 
formulas. We discovered that our method have a good chance 
to significantly improve the performance of these formulas. 
Therefore, it is suggested to use this refinement method for 
these formulas, because it incurs minimal overhead but makes 
the predication more accurate, which will consequently reduce 
the debugging cost. 

In our future study, we will complete the empirical study 
by using larger scale objective programs and multiple-faults 
mutants. Besides we will investigate the effectiveness of our 
method using some other schemes for ranking statements 
with the same risk values, such as average or the best-worst 
scheme. Additionally, how to improve R

new
 by distinguishing 

statements in Gu, with some additional information that can 
provide other definite or heuristic hints, will also be studied. 
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