
Isolating Suspiciousness from Spectrum-Based Fault Localization Techniques

Xiaoyuan Xie1, 2, *
, Tsong Yueh Chen1

, Baowen Xu3

1
Centre for Software Analysis and Testing

Swinburne University of Technology

Hawthorn, Victoria 3122 Australia

{xxie, tychen}@groupwise.swin.edu.au

2
School of Computer Science and

Engineering

Southeast University

Nanjing 210096, China

3
State Key Laboratory for Novel

Software Technology& Department of

Computer Science and Technology

Nanjing University

Nanjing 210093 China

bwxu@nju.edu.cn

Abstract—Spectrum-based fault localization (SBFL) is one of the

most promising fault localization approaches, which normally uses

the failed and passed program spectrum to evaluate the risks for all

program entities. However, it does not explicitly distinguish the

different degree in definiteness between the information associated

with the failed spectrum and the passed spectrum, which may

result in an unreliable location of faults. Thus in this paper, we

propose a refinement method to improve the accuracy of the

predication by SBFL, through eliminating the indefinite

information. Our method categorizes all statements into two

groups according to their different suspiciousness, and then uses

different evaluation schemes for these two groups. In this way, we

can reduce the use of the unreliable information in the ranking list,

and finally provide a more precise result. Experimental study

shows that for some SBFL techniques, our method can

significantly improve their performance in some situations, and

in other cases, it can still remain the techniques’ original

performance

Keywords - program spectrum; fault localization; debugging;

risk evaluation

I. INTRODUCTION

It is commonly recognized that testing and debugging are
important but resource consuming activities in software
engineering. Trying to locate the faults is one of the most
essential but tedious tasks, due to a great amount of manual
involvement. Therefore, many researchers aim at provoking
automatic and effective fault localization technique, in order
to decrease its cost under the limited resources, as well as to
increase the software reliability.

One promising approach for automatic fault localization
is Spectrum-based Fault Localization (referred to as SBFL).
Generally speaking, this approach utilizes the dynamic
testing results and various program spectra information
acquired from the testing to evaluate the risk of containing a
fault for each program entity with different statistical
formulas, and finally to give a risk ranking list [1]. Some
typical techniques include Pinpoint [3], Tarantula [4],
Ochiai [5] and etc. [6-12].

SBFL approach has gained much popularity due to its
nature of simplicity and practicality. However there are still
some problems in this technique. One of them is related to the
definiteness of the information used. By the limitation of
software testing, SBFL has such characteristic that: information

associated with program spectra of failed test cases and passed
test cases has different degree of definiteness. Failed program
spectrum has absolutely definite information that it must
contain at least one faulty entity. On the other hand, a passed
spectrum is not guaranteed to be absolutely free of any faulty
entity. Therefore, in SBFL, the passed spectra must be utilized
together with the failed ones, to provide a more comprehensive
picture about the risks of the statements. For a program entity
with no failed information, we cannot draw any conclusion
about its correctness.

However, even though some statistical formulas in SBFL
may implicitly conceive that risk evaluation should avoid using
the passed information alone; none of them has explicitly
pointed out this idea, and in fact some SBFL techniques do
overlook this idea. Take Hamming Distance, as an example,
which uses two indexes for measuring the risk for each
program entity, that is, the number of failed test cases which
have executed this entity and the number of passed test cases
which have never touched the entity [13]. The sum of these two
indexes is regarded as the risk. However, for certain program
entity which has never been executed by any failed test cases,
the first index is 0. This formula becomes solely dependent on
the second index, which is equivalent to using information
provided by the passed spectra only. In such a situation, the
calculated risk becomes less reliable.

Thus, in this paper, we propose a refinement method to
improve the accuracy of the predication by SBFL, through
eliminating the indefinite information for some statistical risk
evaluation formulas. We use the statement-hit spectrum as an
illustration, which is widely used by SBFL community. Given
a SBFL technique, rather than evaluating each statement’s risk
of being faulty with a relevant statistical formula, our proposal
first categorizes all statements into suspicious group and
unsuspicious group. The suspicious group contains statements
which have shown up at least once in a failed spectrum, that is,
they have been demonstrated to have a chance of being faulty;
while in the unsuspicious group, no statement has shown up in
any failed test run. Intuitively speaking, these statements cannot
be the faulty ones that have been “activated” by the current test
suite. After the categorization, we then continue the normal risk
evaluation using the original statistical formula on the
suspicious statements; meanwhile assign all unsuspicious
statements with the lowest risk value. In this way, we can
improve the reliability of the ranking result, and statements in

* Corresponding author

2010 10th International Conference on Quality Software

1550-6002/10 $26.00 © 2010 IEEE

DOI 10.1109/QSIC.2010.45

385

suspicious group are given a higher priority in debugging, as
they are deserved to have.

Our proposal seems to be simple and obvious, but it is
important because we explicitly summarize a simple but
essential idea into a basic rule, which should be considered in
the further SBFL technique design. Additionally, for SBFL
techniques with the above problem, this method can serve as a
remedy and only incurs minimal overhead. It is intuitively
obvious that our method can enhance the performance of such
SBFL techniques, but the significant improvement is
somehow a pleasant surprise as would be demonstrated later.

The rest of this paper is organized as follows: Section II
describes the background of the spectrum-based fault
localization. Section III discusses the problem due to the use
of less definite information with a simple example, and also
describes our method in details. In Section IV, we introduce
the experimental setup. Section V presents the empirical
results with the extensively used Siemens Suite, and provides
some analysis about the effectiveness of our proposal. In
Section VI, we present the related works and compare our
method with them. Finally we present the conclusion and the
potential problems for further study in Section VII.

II. BACKGROUND: SPECTRUM-BASED FAULT LOCALIZATION

Spectrum-based fault localization, referred to as SBFL, is a
dynamic approach. Two essential types of information are
collected for SBFL, namely testing results and program
spectrum. Testing results are recorded as either pass or fail.
While a program spectrum records the run-time profiles about
various program entities for a specific test suite [7]. These
entities could be individual statements, branches, etc; while the
run-time information could be the binary coverage status, the
time that the entity has been executed, etc. Practically there are
many kinds of combinations [1]. In this paper, we will use the
commonly adopted spectrum, statement-hit spectrum, which
collects the binary execution flag for each statement, as an
illustration.

Utilizing these two types of information, SBFL produces
a vector which consists of four indexes for each statement,
denoted as A=<aef, aep, anf, anp >, where aef and aep denote the
number of test cases that execute the corresponding
statements with a failed and passed result respectively. While
anf and anp represent the number of test cases that do not
execute the corresponding statement, but return a failed and
passed result respectively. An example is shown in Figure 1.

Figure 1. Example of a program spectrum.

It can be seen from Figure 1 that there are 4 statements
<s1, s2, s3, s4> in the current program P. And a test suite TS,
consisting of 6 test cases <t1, t2, t3, t4, t5, t6> is executed, two
of which (t5 and t6), give rise to failed runs and the other four
give rise to passed runs. Vector RE = <e1, e2, e3, e4, e5, e6>
lists the testing results of the corresponding test cases, where
ei is the testing result for ti. Matrix MS gives the statement-hit

spectrum. The binary number in each cell Ms

ijc represents the

coverage information of statement sj, by the test case ti, with
1 if sj is executed, and 0 otherwise. Matrix MA is defined

such that each of its column sub-vectors j

AM represents the

vector A for statement sj. For instance, in Figure 1, anp = 0 for
s1 means that no test case in the current test suite can both
pass and skip s1. And aef =2 for s4 represents that s4 is
executed by two test cases which can detect failure. Of
course the sum of the four indexes for each statement should
be equal to the size of the test suite.

Apparently the ultimate goal for SBFL is to highlight the
parts of the program whose activities strongly correlate with
failures. Thus a risk evaluation formula R is provided, which

is the most essential part in SBFL, to project the vector j

AM

into its statement risk value rj for sj. Normally for a risk
evaluation formula, statements with higher risk values are
considered more likely to contain faults. After getting the
risk value vector VR = <r1, r2, r3, r4> evaluated by formula R
for all the four statements, testers debug by inspecting the
statements according to the descending order of VR .

Suppose program P contains n statements <s1, s2, …, sn>,

then the risk evaluation formula R: DA → DR, where DA

contains the vector A=<anp, anf, aep, aef> for all statements,

that is, DA={ | , , ,j j j j j j

A A ef ep nf npM M a a a a=< > , 1 j n≤ ≤ },

and
RD contains all possible risk r, whose value could be any

real number according to different definitions.
In SBFL, different formulas have different definitions of R,

from the long established Hamming metric, which was
originally introduced for error detecting and correcting codes in
1950 [13], to recently adopted or proposed ones by SBFL
community, including Jaccard[3], Ochiai[5], Ample[8],
Tarantula[4], Wong’s metrics [12], etc. Generally they are
developed from different perspectives or serve for different
purposes. For example, the Tarantula system [4] has been
developed for statement-hit spectra, instead of the previously
used block-hit spectra. Together with a visualized report, it gives
a more detailed and practical diagnosis. While Wong et. al [12]
provide some more reasonable metrics by distinguishing the
effects of different passed test cases in risk evaluation. These
metrics are based on the heuristic that the impact of the first
passed test case in evaluating the risk of certain statement is
more significant than or equal to that of the second passed test
case that executes it. Anyhow no matter from what perspective
are the formulas derived, they should all follow the same
intuition that the faulty statements must be related to failed runs
more closely than the correct statements. Since the evaluation of
a specific formula is not the focus of this paper, we will not
discuss this in details and just simply adopt those formulas, and
see how much they can be improved by our refinement method.

 ()1 2 3 4
:P s s s s

1 1

2 2

3 3

4 4

5 5

6 6

:1 0 0 1

:1 0 1 1

:1 0 1 0
: : :

:1 1 1 1

:1 0 0 1

:1 0 1 1

S

t e pass

t e pass

t e pass
TS M RE

t e pass

t e fail

t e fail

 2 0 1 2

4 1 3 3
:

0 2 1 0

0 3 1 1

ef

ep

A

nf

np

a

a
A M

a

a

386

III. METHODOLOGY

A. Assumption

Generally speaking, the performance of SBFL is solely
dependent on the test suite. Therefore in this paper, all the
“faulty statements” that we refer to are meant for the ones
that have been “activated” by the current test suite. For those
“sleeping” faults which have not yet been revealed by any
failed test cases are not considered in our discussion. This
assumption is meaningful because only failed runs can give
us definite indication about the faults in the program. And
SBFL techniques just utilize this information to evaluate the
risk for each statement of being faulty with various statistical
formulas. Hence, if we want to discover more faults, the only
way is to improve the current test suite, getting at least one
test case revealing the additional faults, and hence acquire
some definite information about them. Actually this is also
assumed implicitly by all existing SBFL techniques, which
require a test suite with at least one failed test case.

B. Problem

SBFL uses two types of program spectra, the failed and
the passed spectrum, to estimate the risk of each statement,
with different risk evaluation formulas. However, the
information associated with these two types of spectra has
different degrees of definiteness. Failed program spectrum
has absolutely definite information that it must contain at
least one faulty statement. On the other hand, a passed
spectrum is not guaranteed to be absolutely free of any faulty
statement. Therefore with the use of passed spectra
information alone we cannot draw any reliable conclusion
about the correctness of certain statement.

Normally SBFL techniques intend to utilize both kinds of
information to make a decision. However sometimes it may
happen to use only the passed spectrum to evaluate the risk
for certain statement. This may yield an unreliable risk value,
and consequently results in a less precise localization result.

Here we still use the example in Figure 1 to illustrate this
situation. Suppose in the program P, s4 is the sole faulty
statement. Let us take one of the Wong’s formulas as an

example: () : ef epR A r a a= − [12]. According to each column

vector j

A
M in

A
M , we get the vector VR = <-2, -1, -2, -1>, which

contains the risk value for each statement correspondingly. It
can be seen that s2 has got the same highest risk as the real
faulty statement s4. The high risk of s2 is due to the presence
of indefinite information associated with aep, as aep = 1, but
not the definite information associated with aef, as aef = 0.
Therefore in this paper, we propose a refinement method by
excluding such scenarios.

C. Solution

Suppose the statement set of program P is {s1, s2, …, sn}.
Since each failed spectrum can definitely indicate the
presence of at least one “activated” faulty statement, based on
the assumption in Section III.A, we can easily conclude that
all the “activated” faulty statements must reside and only
reside in the union of all failed spectra. Therefore we can
categorize all statements into two groups: the suspicious group

Gs and the unsuspicious group Gu. We define
s i

failed

G tr= ∪ ,

where tri ={sj | sj such that it is executed by test case ti}, that
is, the collection of statements with value 1 in the statement-
hit spectrum for test case ti. And consequently we

define
u sG P G= − .

It can be seen from the definition that Gs contains all
statements which have shown up at least once in a failed
spectrum, that is statements with aef ≠ 0; while in Gu, no
statement has shown up in any failed test run, that is statements
with aef = 0. It is obvious that with respect to the current
“activated” faults, the statements in Gs have been
demonstrated to have a chance of being faulty. While the
statements in Gu are clean, that is, they cannot be the
“activated” faulty statements. For the example in Section
III.B, we have Gs = {s1, s3, s4} and Gu = {s2}.

After the above categorization, we update the evaluation

formula with R
new

: DA →DR in the following way:

() 1
()

_

i i snew

i

i u

R A s G
R A

Min risk s G

+ ∀ ∈
=

∀ ∈

where , , ,i i i i

i ef ep nf npA a a a a=< > denotes the vector A for

statement si, and Min_risk = min{R(Ai)|∀si∈Gs}, that is the

minimal risk value among all statements i ss G∈ . For the

example in Section III.B, after using our refinement method,
the new risk vector becomes VR = <-1, -2, -1, 0>. This time,
the SBFL technique makes a more accurate estimation.

It can be seen that formula R
new

 evaluates the risks of
statements in different groups with different schemes, which
can separate them in the final ranking list. For statements in
Gs, the new risk values are their original values acquired
from the original formula R, added by a constant. The actual
value of this constant is not important, since only the relative
order among all statements is important; hence the aim of
this addition is just to assure that all statements in Gs have
higher risk values than statements in Gu. In our definition of
R

new
, we use 1 as an example.
On the other hand, for statements in Gu, the new risk

values are simply assigned with the minimum among all
original risk values evaluated by R. They are not
distinguished in our method because the only available
information about these statements from the current test suite
is the number of passed test cases that have executed these
statements. There are 2 possible situations:

1. aep = 0, that is this statement has never been executed
by any test case in the current test suite. In such a case, we
actually have no information about this statement.

2. aep ≠ 0, which means that this statement has been
executed, but only by some passed test cases. According to the
limitation of software testing, the passed runs themselves
cannot provide any absolutely definite information about the
correctness of the statements.

However aep may be affected by the current test suite,
hence with this index only, we cannot reliably distinguish these
statements. Actually the scheme that assigns the risk of
statements in Gu with the same lowest value indicates that these
statements can be ignored in debugging, because we are

387

absolutely sure that they can never be any of the current
“activated” faulty statements. Even they may be the “sleeping”
faults; we still have no way to be sure what they actually are.
Hence the most reasonable way is to ignore them in debugging,
until they are executed by some new failed test cases. At that
time, they become suspicious statements, with respect to the
newly “activated” faults revealed by the new failed test cases.

In a word, with R
new

 all statements in Gs will be ranked at
the top of the final list, in their originally relative order ranked
by R. While all statements in Gu will be ranked at the bottom
of the list. In such a way, our method can provide a more
precise localization result by excluding the indefinite
information and make programmers to focus on the
statements in Gs. Of course, we can improve R

new
 by

distinguishing statements in Gu, apparently, with some
additional information that can provide definite or heuristic
hints. And this will be investigated in our future study.

It can be seen that our method helps to distinguish the
difference of information associated with failed test cases and
passed test cases, in terms of their definiteness. Actually among
all the existing statistical risk evaluation formulas in SBFL,
which are derived from different intuitions and serve for
various purposes, some may implicitly conceive that risk
evaluation should avoid using the passed information alone (for
example the Tarantula [4], but not Wong’s formula [12]).
However none of them has explicitly pointed this out, which
makes it easily be overlooked. Hence our proposal explicitly
summarizes this simple but essential idea into a basic rule,
which should be considered in the design of new SBFL
techniques. More importantly, for those existing formulas
which do not conceive such idea, our method can serve as an
effective refinement remedy with marginal overhead. Of
course, the effectiveness could be different with different fault
types and test suites. Thus, it is interesting for us to investigate
how effective our method can be.

IV. EXPERIMENTAL SET UP

A. Testing objects

In our case study, we use the Siemens suite as our
benchmark, which is acquired from the Software Information
Repository [15]. The Siemens suite contains seven small
programs, several faulty versions of these programs and also
a series of test suites for various testing criteria. Table I lists
the programs, the number of faulty versions of each program,
lines of code, number of all test cases, as well as a brief
description about the functionality of the corresponding
program. For more detailed information, please refer to [16].

We choose the Siemens suite simply because it is a
widely used benchmark for fault localization community [5,
12, 17, 18]. In our experiments, we utilize the “universe”
suite, which contains all the test cases in the Table I.
However we cannot adopt all mutants of these programs
(132 versions in total). Among these 132 mutants, version 10
of print_tokens2, version 32 of replace and version 9 of
schedule2 have no failures detected by any test case, hence
they are not considered by our experiments. Besides, in our
study, we focus on the single-fault mutants. Hence, version 1
of print_tokens, version 21 of replace, version 2 and version 7

of schedule, versions 10, 11, 15, 31, 32, 33 and 40 of tcas are
discarded in the experiments. Furthermore, in our experiments,
we aim to investigate the executable statements, thus we ignore
the modification in non-executable statements, such as
changing in the header files, mutants in variable declaration
statements, or modifications in a macro statements started with
#define. For this purpose we further exclude the following
mutants: version 12 of replace, versions 2, 4 and 6 of
print_token, versions 13, 14, 36, 38 of tcas, and versions 6, 10,
19, 21 of tot_info. In summary, we have excluded 26 mutants
in total, and used 106 versions for experiments. Besides gcov is
applied for the statement-hit spectrum collection.

TABLE I. BRIEF INTRODUCTION OF SIEMENS SUITE

Program Versions LOC Number of

Test Cases

Description

print_tokens 7 563 4130 Lexical analyser

print_tokens2 10 508 4115 Lexical analyser

replace 32 563 5542 Pattern recognition

schedule 9 410 2650 Priority scheduler

schedule2 10 307 2710 Priority scheduler

tcas 41 173 1608 Altitude separation

tot_info 23 406 1052 Information measure

B. Formulas under investigation

As described in Section III.C, different risk evaluation
formulas are designed from different perspectives, and used for
different purpose. Some of them may make use of the indefinite
information. Our experimental study is focused on such formulas.
Table II lists all the formulas we have investigated in the
experiments, which can be divided into two groups [14].

TABLE II. INVESTIGATED FORMULAS

The first group contains formulas which have been used

in other SBFL techniques. These formulas include: Wong2,

Wong
3
which were originally introduced by [12], Optimal and

its variant Optimal
p
 (referred to as O and O

p
 respectively in

the table), which are provided in [14] and have been proved

to be the best in certain cases among many formulas, and

Cooperative Bug Isolation system (referred to as CBI in the

Name Formula

Wong2 ef ep
a a−

Wong3
efa h− , where (2)

2 0.1(2)(2 10)

2.8 0.001(10)(10)

ep ep

ep ep

ep ep

a a

h a a

a a

 ≤

= + − < ≤
 + − >

O 1(0)

(0)

nf

np nf

a

a a

− >

≤

Op

1

ep

ef

ep np

a
a

a a
−

+ +

CBI
ef ef nf

ef ep ef nf np ep

a a a

a a a a a a

+
−

+ + + +

Scott 24 4 ()

(2)(2)

ef np nf ep nf ep

ef nf ep np nf ep

a a a a a a

a a a a a a

− − −

+ + + +

GMean

()()()()

ef np nf ep

ef ep np nf ef nf ep np

a a a a

a a a a a a a a

−

+ + + +

Rogot 1
()

4

ef ef np np

ef ep ef nf np ep np nf

a a a a

a a a a a a a a
+ + +

+ + + +

M ef np

nf ep

a a

a a

+

+

388

table) [10]. However, CBI was not originally designed for

statement-hit spectrum. It is for the method called

instrumentation of predicates, which instruments predicates in

selected parts of the code. Hence it uses the sampling of the

coverage information collected by the instrumented

predicates, rather than using the whole execution trace. But its

formula can be equally applied to the statement-hit spectrum.
We also select several metrics from other research

domains to form the second group. Even they are not
originally designed for fault localization; it is still worth to
investigate them. Because most of the formulas used in fault
localization are actually brought from other research areas,
such as mathematics, data mining, bioinformatics, etc.
Among which Scott [21], Geometric Mean (referred to as
GMean in the table) [22] and Rogot [23] are introduced from
the area of biometrics. And one of the unnamed metrics that
is referred to as M in [14] is previously used for
classification and clustering [24].

C. Evaluation metric

In our experimental study, we use the established
measurement, relative ranking of faulty statement, to
investigate the effectiveness of the application of our
refinement method to some SBFL techniques. The relative
ranking, referred to as pr in this paper, is the percentage of the
program that needs to be examined before a bug is found (that
is the absolute ranking of the faulty statement divided by the
total number of statements). Similar effectiveness
measurements have been adopted by most of the previous
studies in SBFL [2, 5, 6, 14, 17, 18, 25].

In our experiments, for the statements with the same
assigned risks value, we rank them according to their original
order in the source code. This is reasonable and practical
because in the real debugging process, for a set of statements
of the same risk, we have no way to specify certain checking
order without any other information. Thus the most natural
way is to check them one by one in their original order.

In our empirical data, we also exclude all the non-
executable lines in source code, such as the comments, blank
lines, the braces, declarations, macro definition (#define), etc.
This is a reasonable process because they will not be
considered when developers debug their program.

V. RESULTS AND ANALYSIS

A. Effectiveness

In our experiments, we apply the refinement method to all
the formulas listed in Table II, investigating its effectiveness in
improving the performance of these SBFL techniques. For each
program, we use a box-plot diagram to visually present the
performance improvement after adopting our refinement
method in all the formulas, that is, the percentage of the relative
decrease in pr, in Figure 2 to Figure 8. From the bottom to the
top, each column of these diagrams presents the minimum, the
1st quartile, the medium, the 3rd quartile, and the maximum
of the percentages among all the mutants of the respective
program, with certain risk evaluation formula. Columns
without any data demonstrated indicate that the respective

formula’s performance remains unchanged after adopting
our method.

Figure 2. Performance comparison in print_token

Figure 3. Performance comparison in print_tokens2

Figure 4. Performance comparison in replace

Figure 5. Performance comparison in schedule

Figure 6. Performance comparison in schedule2

Figure 7. Performance comparison in tcas

389

Figure 8. Performance comparison in tot_info

It can be seen from these figures that our method is
helpful in improving the performance of SBFL in many
situations: among all the programs under testing, the number
of formula whose performance has been improved varies
from three to eight out of nine under investigation.
Especially in some mutants of these programs, some risk
evaluation formulas can achieve quite significant
improvement. For example, in the version 3 of tot_info,
when using Wong

2
 as the risk evaluation formula, our

refinement method can achieve as high as 96.0%
improvement. Besides for the situations where the
performance of certain formula cannot be improved, our
method can still ensure to remain its original pr. Table III and
Table IV summarizes the result for individual program and
formula respectively.

TABLE III. SUMMARIZED IMPROVEMENT FOR INDIVIDUAL PROGRAM

TABLE IV. SUMMARIZED IMPROVEMENT FOR INDIVIDUAL FORMULA

In Table III, for each individual program, this table
presents the number of formulas that have been improved in
column “R_Num”; as well as the maximum and minimum of
the average performance improvement over all the mutants
among all the investigated formulas, in column “Max_Imp”
and “Min_Imp” respectively. It can be seen that for program
print_tokens, print_tokens2, tcas and tot_info, performance have
been improved in about half of the formulas, and for program
replace, schedule and schedule2, almost all the formulas have
been improved. Among all the improvement, the highest one
is in program tcas, using both formula Wong

2
 and M. The

magnitude is as high as 29.4%. Apart from tcas, for other
programs like print_tokens, replace, schedule and tot_info,
the maximal decrease in pr is also no less than 24%.
However for print_tokens2 and schedule2, the improvement
is not as significant as the other programs.

In Table IV, for each individual formula, column
“P_Num” represents the number of programs that have been
improved for certain formula. It can be discovered that
different formulas have different sensitivities to our
refinement method, but they have been improved in at least
one program. Wong

2
, Scott and M are of the highest

sensitivity to our method, since their performances have been
improved in all the 7 programs. Meanwhile, their maximal
decrease in pr is not less than 28%. Besides, in formula
Wong

3
, O

p
, GMean and Rogot, even their performance have

only been improved in less than 4 of the programs, their
maximal magnitudes are still very substantial (no less than
23.0%). Especially for formula O

p
, we surprisingly discover

that

in program schedule, it can obtain a relatively significant

decrease of pr by 24.8%. More importantly, O
p

has been
proved as an optimal formula in most situations [14]. On the
other hand, formula O and CBI can be regarded as less
sensitive to our methods, due to their low P-Num and less
significant improvement than the other formulas.

B. Threats to validity

There are a number of threats to the validity of this
experimental study. Specifically, the primary one is the
representative of our results acquired from the Siemens suite.
Although these 7 programs are adopted widely in SBFL
community as a benchmark, we still need to use some more
programs with larger scales, to investigate the effectiveness of
our method. Besides, the results in our experiments are
obtained from mutation analysis of single fault. To investigate
the effectiveness of our method in a more generalized situation,
we need to adopt mutants with multiple faults. Another threat is
about the effectiveness measurement. We rank all statements
with the same risk in their original order in the source code, but
there also exist some other schemes in ranking these statements,
such as average, best-worst, etc [25]. We can investigate the
effectiveness of our method with these schemes. These further
experiments will be completed in our future study.

VI. RELATED WORK

Apart from SBFL, current research in fault localization and
debugging has developed many other techniques using various
intuitions. Some of them consider only statements executed in the
failed runs. Two typical ones are methods that isolate faulty
statements via predicate switching and value replacement [26, 27].

In the method using predicate switching, a predicate’s
outcome is forcibly switched at runtime. Consequently the
control flow is altered and the program state is modified. This
method tries to isolate the faults by examining the predicates
whose switching can bring the program execution into a
successful completion, using the original failed test input.
Similarly the method using value replacement aims to search
for statements whose replacement will change a failed input
into a passed one. This is done by replacing values used at a
statement during the runtime execution of the failed test case.

Program R_Num Max_Imp Min_ Imp

print_tokens 3 24.1% 10.4%

print_tokens2 4 6.3% 2.5%

replace 7 25.0% 3.6%

schedule 8 28.3% 1.0%

schedule2 7 6.7% 0.2%

tcas 4 29.4% 0.6%

tot_info 4 24.8% 3.2%

Formula P_Num Max_Imp Min_ Imp

Wong2 7 29.4% 6.3%

Wong3 4 24.9% 0.2%

O 3 6.5% 0.4%

Op 1 24.8% 24.8%

CBI 3 4.5% 0.3%

Scott 7 28.3% 5.2%

GMean 3 24.2% 0.3%

Rogot 2 23.0% 3.6%

M 7 29.4% 4.3%

390

It is obvious that these methods are different from our
refinement method. Firstly, our method needs to be integrated
with a SBFL technique, which uses information obtained
from testing and various statistical formulas to evaluate and
rank the risks for different program entities. The above two
methods are not SBFL techniques and are derived from
different perspective and intuition, using different mechanism
to isolate the faults. Secondly, our method focuses on using
all the failed test information to refine some risk evaluation
formulas in SBFL, so as to decrease the risk value of
statements which are not executed by any failed test cases. For
statements which are executed by some failed test cases, we
still use all the failed and passed testing information in the
current test suite to evaluate their risks. However, the above
two methods only use the information obtained from one single
failed test case, and try to turn this “failed” test input into a
“passed” one, through the predicate switching or value
replacement.

Our method is also different from the set-based
debugging techniques, which try to isolate the faulty
statements based on various heuristic models. Two
representatives are the Nearest Neighbor technique [17] and
the Execution Slicing based technique [

].
The Nearest Neighbor technique has two heuristic

models, namely Set-union and Set-intersection. Both of them
use a single failed spectrum (tr

f
) and all the passed spectra

(tr
p
). Set-union model aims at removing the union of all

passed spectra from the failed spectrum, that is, f p

i

i

tr tr−∪ . It

focuses on statements that only belong to the failed run. Set-

intersection model uses set p f

i

i

tr tr−∩ , of which non-

membership is discriminant for the fault.
The Execution Slicing based technique locates the faulty

statements by using three heuristic models on execution
slicing. The first model uses one failed execution slicing
(ex

f
), and one passed execution slicing (ex

p
). The target

statements are the execution dicing, ex
f
-ex

p
. These statements

are given highest priority in debugging, while statements in

set ex
f
∩ex

p
 have the second highest priority and statements in

ex
p
-ex

f
are assigned with lowest priority. The second model

uses one failed execution slicing ex
f
, and two passed execution

slicing
1

pex and
2

pex , in which, set
1 2

()f p pex ex ex− ∪ is assigned

with the highest priority, set
1 2()f p p

ex ex ex∩ − and

2 1()f p p
ex ex ex∩ − are equally assigned with the second highest

priority, set
1 2

f p pex ex ex∩ ∩ are assigned with the third highest

priority, while the remaining statements obtain the lowest
priority. And the third model, as well as the most general case,
uses multiple failed and multiple passed execution slicing.
Suppose the whole test suite is TS, for any of its subset TS’
which contains both failed and passed test cases, the

construction scheme is f p

i j

i j

ex ex−∩ ∪
, where f

i
ex and p

jex are

the failed and passed execution slicing of test cases that belong
to TS’ respectively.

However it can be seen that, none of the above models
has explicitly distinguished the different degree of reliability
between the information associated with the failed and the
passed test cases. Hence they can provide only some
heuristic results. Meanwhile, apart from the third model in
Execution Slicing based technique, all the other models are
based on only one failed test case with definite information
and multiple passed test cases with indefinite information,
which makes the results even more unreliable. Differently,
our method explicitly makes use of the distinction between
definite information of failed runs and indefinite information
of passed runs. Based on this fact, we use all the failed
testing information to categorize statements.

Furthermore these techniques only provide a set of
statement, which serves as the initial suspicious set for
debugging. However they do not clearly distinguish the
suspiciousness either within the set or outside the set, that is,
they cannot provide a more subtle risk ranking list. Even
though the first two models of the Execution Slicing based
technique can assign different sets with different priorities,
for the third model in general case, since the combination of
execution slicing becomes much more complex, it is not a
trivial task of assigning priorities to all these combinations.

While our method, which serves as an enhancement to
SBFL, can fully utilize the information from the current test
suite and evaluate the risks for suspicious statements by
adopting the same method of SBFL. Thus it not only helps to
exclude the unsuspicious statements, but also can supply a
subtle ranking list for all suspicious statements, which can
facilitate the debugging much better.

VII. CONCLUSION

In this study, we proposed a refinement method for
SBFL techniques. In our proposal, we take into
consideration of the distinction between the definiteness of
the information carried by the failed spectra and the passed
spectra, and hence improve the accuracy of the predication
by some statistical risk evaluation formulas, through the
elimination of indefinite information. Our approach works
under the assumption that SBFL process should focus on
those “activated” faulty statements with respect to the
current test suite; other potential “sleeping” faults should be
ignored. This is generally assumed by the SBFL
community, since all of its existing techniques require a test
suite with at least one failed run to reveal the fault.

Under the above assumption, we categorize all
statements into suspicious group and unsuspicious group,
with respect to the “activated” faults. The suspicious group
should contain all the statements that have been
demonstrated to have a chance of being faulty; while the
unsuspicious group contains the remaining statements. Under
such categorization, we only need to calculate the risks for
suspicious statements, and simply to assign the risks of
unsuspicious statements as the lowest value.

Even though some SBFL techniques may implicitly
conceive that risk evaluation should avoid using the passed
information alone; none of them has explicitly pointed it out,
and actually some SBFL techniques do overlook this idea.
Hence we explicitly summarize this simple but essential idea

391

into a basic rule, which should be considered in the further
SBFL technique design.

More importantly, for the SBFL techniques that do not
conceive such idea, our method can serve as an effective
remedy. It is intuitively obvious that our method will not
worsen the performance of these SBFL techniques, but how
effective it can be is an interesting and important question.
Thus we conducted an experimental study to investigate its
effectiveness using the Siemens suite and 9 evaluation
formulas. We discovered that our method have a good chance
to significantly improve the performance of these formulas.
Therefore, it is suggested to use this refinement method for
these formulas, because it incurs minimal overhead but makes
the predication more accurate, which will consequently reduce
the debugging cost.

In our future study, we will complete the empirical study
by using larger scale objective programs and multiple-faults
mutants. Besides we will investigate the effectiveness of our
method using some other schemes for ranking statements
with the same risk values, such as average or the best-worst
scheme. Additionally, how to improve R

new
 by distinguishing

statements in Gu, with some additional information that can
provide other definite or heuristic hints, will also be studied.

ACKNOWLEDGMENT

This project is partially supported by an Australian
Research Council Discovery Grant (ARC DP0771733), the
National Natural Science Foundation of China (90818027,
60633010, and 60721002), the National High Technology
Development Program of China (2009AA01Z147), as well
as the Major State Basic Research Development Program of
China (2009CB320703).

REFERENCES

[1] M. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An empirical
investigation of the relationship between spectra differences and
regression faults,” Software Testing Verification and Reliability,
vol. 10, no. 3, pp. 171–194, 2000.

[2] R. Abreu, P. Zoeteweij, and A. van Gemund, “On the Accuracy of
Spectrum-based Fault Localization,” in Proceedings of Testing:

Academic and Industrial Conference Practice and Research
Techniques-MUTATION, 2007, pp. 89–98.

[3] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
Problem determination in large, dynamic internet services,” in
Proceedings of the 32th IEEE/IFIP International Conference on
Dependable Systems and Networks, 2002, pp. 595–604.

[4] J. Jones, M. Harrold, and J. Stasko, “Visualization of test information
to assist fault localization,” in Proceedings of the 24th International

Conference on Software Engineering. ACM, 2002, p. 477.

[5] R. Abreu, P. Zoeteweij, and A. Gemund, “An evaluation of similarity

coefficients for software fault localization,” in Proceedings of the

12th Pacific Rim International Symposium on Dependable

Computing. IEEE Computer Society, 2006, pp. 39–46.

[6] H. Pan and E. Spafford, “Heuristics for automatic localization of

software faults,” World Wide Web, 1992.

[7] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program profiling

for software maintenance with applications to the year 2000

problem,” ACM SIGSOFT Software Engineering Notes, vol. 22, no. 6,

pp. 432–449, 1997

[8] A. Zeller, “Isolating cause-effect chains from computer programs,”

ACM SIGSOFT Software Engineering Notes, vol. 27, no. 6, p. 10, 2002.

[9] B. Liblit, “Cooperative bug isolation,” Ph.D. dissertation, University

of California, 2004.

[10] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan, “Scalable

statistical bug isolation,” in Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation.

ACM New York, NY, USA, 2005, pp. 15–26.

[11] C. Liu, X. Yan, L. Fei, J. Han, and S. Midkiff, “SOBER: statistical

model-based bug localization,” ACM SIGSOFT Software Engineering

Notes, vol. 30, no. 5, pp. 286–295, 2005.

[12] W. Wong, Y. Qi, L. Zhao, and K. Cai, “Effective fault localization

using code coverage,” in Proceedings of the 31st Annual

International Computer Software and Applications Conference,

vol. 1, 2007.

[13] R. Hamming, “Error detecting and error correcting codes,” Bell

System Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[14] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-

based software diagnosis,” ACM Transactions on Software

Engineering and Methodology, in press.

[15] SIR, “http://sir.unl.edu/php/index.php.”

[16] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments of

the effectiveness of dataflow-and controlflow-based test adequacy

criteria,” in Proceedings of the 16th International Conference on

Software Engineering. IEEE Computer Society Press Los Alamitos,

CA, USA, 1994, pp. 191–200.

[17] M. Renieris and S. Reiss, “Fault localization with nearest neighbor

queries,” in Proceedings of the 18th IEEE International Conference

on Automated Software Engineering, 2003, pp. 30–39.

[18] J. Jones and M. Harrold, “Empirical evaluation of the tarantula

automatic fault-localization technique,” in Proceedings of the 20th

IEEE/ACM International Conference on Automated Software

Engineering. ACM, 2005, p. 282.

[19] A. Jain and R. Dubes, Algorithms for clustering data. Prentice Hall

Englewood Cliffs, NJ, 1988.

[20] M. Dunham, Data Mining: Introductory And Advanced Topics, 1/e.

Pearson Education, 2003.

[21] W. Scott, “Reliability of content analysis: The case of nominal scale

coding,” Public Opinion Quarterly, vol. 19, no. 3, p. 321, 1955.

[22] A. Maxwell and A. Pilliner, “Deriving coefficients of reliability and

agreement for ratings.” The British Journal of Mathematical and

Statistical Psychology, vol. 21, no. 1, p. 105, 1968.

[23] E. Rogot and I. Goldberg, “A proposed index for measuring

agreement in test-retest studies.” Journal of chronic diseases, vol. 19,

no. 9, p. 991, 1966.

[24] B. Everitt, Graphical techniques for multivariate data. North-Holland

New York, 1978.

[25] W. Wong, V. Debroy, and B. Choi, “A family of code coverage-

based heuristics for effective fault localization,” The Journal of

Systems and Software, vol. 83, no. 2, pp. 188–208, 2010.

[26] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through automated

predicate switching,” in Proceedings of the 28th international

conference on Software engineering. ACM, 2006, pp. 281–290.

[27] D. Jeffrey, N. Gupta, and R. Gupta, “Fault localization using value

replacement,” in Proceedings of the 2008 international symposium on

Software testing and analysis. ACM, 2008, pp. 167–178.

[28] W. Wong, T. Sugeta, Y. Qi, and J. Maldonado, “Smart debugging

software architectural design in SDL,” The Journal of Systems and

Software, vol. 76, no. 1, pp. 15–28, 2005.

392

